Amphotericin B binds to amyloid fibrils and delays their formation: a therapeutic mechanism?

نویسندگان

  • Scott C Hartsel
  • Theodore R Weiland
چکیده

The membrane-active antifungal agent amphotericin B (AmB) is one of the few agents shown to slow the course of prion diseases in animals. Congo Red and other small molecules have been reported to directly inhibit amyloidogenesis in both prion and Alzheimer peptide model systems via specific binding. We propose that it is possible that AmB may act similarly to physically prevent conversion of the largely alpha-helical prion protein (PrP) to the pathological beta-sheet aggregate protease-resistant isoform (PrP(res)) in prion disease and by analogy prevent fibrillization in amyloid diseases. To assess whether AmB is capable of binding specifically to amyloid fibrils as does Congo Red, we have used the insulin fibril and Abeta 25-35 amyloid model fibril system. We find that AmB does bind strongly to both insulin (K(d) = 1.1 microM) and Abeta 25-35 amyloid (K(d) = 6.4 microM) fibrils but not to native insulin. Binding is characterized by a red-shifted AmB spectrum indicative of a more hydrophobic environment. Thus AmB seems to have a complementary face for amyloid fibrils but not the native protein. In addition, AmB interacts specifically with Congo Red, a known fibril-binding agent. In kinetic fibril formation studies, AmB was able to significantly kinetically delay the formation of Abeta 25-35 fibrils at pH 7.4 but not insulin fibrils at pH 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients

Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...

متن کامل

Inhibition of Amyloid Fibrils Formation from Hen Egg White Lysozyme by Satureia Hortensis Extract and its Effect on Learning and Spatial Memory of Rats

Background & Aims: Alzheimer's disease is a neurodegenerative disorder characterized by the abnormal aggregation of amyloid-β plaques in the brain. Although several studies have been done for finding effective medicines in the treatment of this disease, a drug that inhibits amyloid β aggregation and ameliorates the disorder has not been approved so far. One important therapeutic approach is use...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis.

Extracellular deposition of amyloid fibrils is responsible for the pathology in the systemic amyloidoses and probably also in Alzheimer disease [Haass, C. & Selkoe, D. J. (1993) Cell 75, 1039-1042] and type II diabetes mellitus [Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. (1994) Nature (London) 368, 756-760]. The fibrils themselves are relatively resistant to proteolysis in vitro b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 42 20  شماره 

صفحات  -

تاریخ انتشار 2003